Soi c\u1ea7u Pascal l\u00e0 g\u00ec? M\u1ed9t trong nh\u1eefng c\u00f4ng th\u1ee9c \u0111\u01b0\u1ee3c c\u00e1c chuy\u00ean gia \u0111\u00e1nh gi\u00e1 r\u1ea5t cao nh\u1edd v\u00e0o c\u00e1ch t\u00ednh to\u00e1n logic, \u0111\u1ea7y chi\u1ebfn thu\u1eadt v\u00e0 x\u00e1c su\u1ea5t tr\u00fang l\u00ean \u0111\u1ebfn 80% \u0111\u00f3 l\u00e0 c\u00e1ch soi c\u1ea7u pascal. \u0110\u1ed5i l\u1ea1i v\u1edbi \u0111\u00f3 l\u00e0 v\u00f4 v\u00e0n kh\u00f3 kh\u0103n trong vi\u1ec7c th\u1ef1c hi\u1ec7n ph\u01b0\u01a1ng ph\u00e1p n\u00e0y \u0111ang ch\u1edd \u0111\u00f3n anh em.<\/p>\n
V\u00ec th\u1ebf h\u00f4m nay chia s\u1ebb b\u00e0i vi\u1ebft h\u01b0\u1edbng d\u1eabn c\u00e1ch soi c\u1ea7u tam gi\u00e1c Pascal \u0111\u1ec3 anh em ch\u1ea5m d\u1ee9t c\u1ea3nh xa b\u1edd v\u00e0 lu\u00f4n c\u00f3 1 b\u00ed quy\u1ebft b\u1eaft s\u1ed1 \u0111\u1ec3 th\u1ee7 th\u00e2n khi tham gia l\u0129nh v\u1ef1c s\u1ed1 h\u1ecdc.<\/p>\n
<\/span>Soi c\u1ea7u Pascal l\u00e0 g\u00ec?<\/h2>\n\n\nTrong b\u00e0i vi\u1ebft n\u00e0y<\/p>\n<\/div>\n
Trong b\u00e0i vi\u1ebft n\u00e0y<\/p>\n<\/div>\n